
Designing
intermediate
representations
CS448h 
Oct. 6, 2015

Programming languages are all about
representations of computation

The right representations are
what give DSLs their power

DSLs are often best designed
from the IRs out

For example: linear algebra x’ = ABx
A : L⨉M
B : M⨉N
x : N⨉1

For example: linear algebra x’ = ABx
A : L⨉M
B : M⨉N
x : N⨉1

C	:	LxN	
for	l	in	L:	
for	m	in	M:	
for	n	in	N:	
C[l,n]	+=	A[l,m]*B[m,n]	

for	l	in	L:	
for	n	in	N:	
x’[l]	+=	C[l,n]*x[n]

For example: linear algebra x’ = ABx
A : L⨉M
B : M⨉N
x : N⨉1

C	:	LxN	
for	l	in	L:	
for	m	in	M:	
for	n	in	N:	
C[l,n]	+=	A[l,m]*B[m,n]	

for	l	in	L:	
for	n	in	N:	
x’[l]	+=	C[l,n]*x[n]

x’ = mul(mul(A, B), x)

For example: linear algebra x’ = ABx
A : L⨉M
B : M⨉N
x : N⨉1

C	:	LxN	
for	l	in	L:	
for	m	in	M:	
for	n	in	N:	
C[l,n]	+=	A[l,m]*B[m,n]	

for	l	in	L:	
for	n	in	N:	
x’[l]	+=	C[l,n]*x[n]

x’ = mul(mul(A, B), x)

x’ = mul(A, mul(B, x))

simple
rewrite

For example: linear algebra x’ = ABx
A : L⨉M
B : M⨉N
x : N⨉1

C	:	LxN	
for	l	in	L:	
for	m	in	M:	
for	n	in	N:	
C[l,n]	+=	A[l,m]*B[m,n]	

for	l	in	L:	
for	n	in	N:	
x’[l]	+=	C[l,n]*x[n]

x’ = mul(mul(A, B), x)

x’ = mul(A, mul(B, x))

simple
rewrite

?!?

What makes a good IR?

simplicity
as few types as possible

analyzability / transformability
restriction

generality / expressive power

Different representations are best for
different problems.

across domains for different
compilation problems
in a single domain

why we make DSLs!

not 1 IR per compiler/DSL,
but many!

What makes a good IR? (take 2)

Easy target to generate
from what came before

Easy source from which to
generate what comes after

What makes a good IR? (take 2)

Easy target to generate
from what came before

Easy source from which to
generate what comes after

at the front-end: easy
for a human to write!

Common types of representation

trees reflect the hierarchical
structure of programs

graphs reflect control and data flow

1 3

4x

+

3

4a

+

+

Common types of representation

trees reflect the hierarchical
structure of programs

graphs reflect control and data flow

tables map identifiers to nodes,
auxiliary metadata

1 3

4x

+

3

4a

+

+

Common types of representation

AST: user code

High-level: user intent

Low-level: execution strategy

Instruction-level: machine operations

Common types of representation

AST: user code

High-level: user intent

Low-level: execution strategy

Instruction-level: machine operations

lowering

Algebraic Data Types
a notation for representations

Algebraic Data Types
a notation for representations

x = A | B (y) | C (x, y)
y = D (x)

Algebraic Data Types
a notation for representations

x = A | B (y) | C (x, y)
y = D (x)

B (D (C (A, D (A)))

Algebraic Data Types
a notation for representations

x = A | B (y) | C (x, y)
y = D (x)

list = Cons (val, list) | Nil

B (D (C (A, D (A)))

Algebraic Data Types
a notation for representations

x = A | B (y) | C (x, y)
y = D (x)

list = Cons (val, list) | Nil

list = Cons (val, list) | Atom (val)

B (D (C (A, D (A)))

Representing Regexs
& NFAs

Representing Regexs
& NFAs

re = Char (char)
 | Seq (re list)
 | Or (re list)
 | Star (re)
 | Maybe (re)

Representing Regexs
& NFAs

nfa = NFA (node list, start : node)

re = Char (char)
 | Seq (re list)
 | Or (re list)
 | Star (re)
 | Maybe (re)

Representing Regexs
& NFAs

nfa = NFA (node list, start : node)

node = Node (edge list, accepts : bool, id : int)

re = Char (char)
 | Seq (re list)
 | Or (re list)
 | Star (re)
 | Maybe (re)

Representing Regexs
& NFAs

nfa = NFA (node list, start : node)

node = Node (edge list, accepts : bool, id : int)

edge = EpsEdge (pointsTo : int)
 | CharEdge (token : char, pointsTo : int)

re = Char (char)
 | Seq (re list)
 | Or (re list)
 | Star (re)
 | Maybe (re)

Representing Regexs
& NFAs

nfa = NFA (node list, start : node)

node = Node (edge list, accepts : bool, id : int)

edge = EpsEdge (pointsTo : int)
 | CharEdge (token : char, pointsTo : int)

re = Char (char)
 | Seq (re list)
 | Or (re list)
 | Star (re)
 | Maybe (re)

nodemap = map int → node

Why is this a good idea?

IRs are naturally recursive data structures
with variants

Concise notation to formalize what we’re
building

Writing down early reveals issues

Common ways to fail

Throw away information
including what’s in the code vs. the programmer’s head

Be too general
Turing completeness is a curse
when in doubt, restrict rather than generalize!

Expect to get your IRs wrong at first!

Design from your
representations out!

Iterate until they feel right

